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Getting more from your Engineering Data?
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Getting more from your Engineering Data

= Data Analytics
= Big Data

As an industry, we plan new wells based on past drilling
experiences and data

* Much of current historical analysis is based on the experience of the
engineer, not on reliable data and consistent analytics

* For the data that is available, it is difficult to extract meaningful and timely
knowledge from it
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Getting more from your Engineering Data

“Data is not information,

information is not knowledge...”
Clifford Stoll
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High Science Simplified

Why Analytics?

* The ability to easily access, review, interrogate, & visualize all
relevant data (including historical real-time data) from offset

Optimize planning new wells
P P & wells.

Minimize costs . . .
* Quickly compare data from tens if not hundreds of wells in an

) area
Reduce down-time

* |Identify patterns that preceded previous downtimes

* |Identify the best performing options in relation to a specific
Benchmarking activities process; this could include any process of well planning, well
construction, or well abandonment.
Rate, manage, and improve
performance * |Identify & rank underperforming units, service companies,
wells etc.
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Analytics
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Relational Databases vs Analytical Databases

_Bit Performance

Relational vs. Analytic Data Models
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Relational Database

Data is arranged in flat inter-related tables.
* \ery efficient for storing lots of data

* \Very inefficient for mining information.

Analytic Database

Data is arranged multi-dimensional data-
structures known as cubes and centered on a
single business question or concern.

* Very inefficient for storing lots of data

* \Very efficient for mining information.



High Science Simplified

Common Analytical Models

Example of business intelligence
models (analyses) for common drilling

problems: | =
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© 2012 HALLIBURTON. ALL RIGHTS RESERVED. 9 HALLIBURTON



High Science Simplified

Building Analytical Models

To be effective and utilised, an engineer
needs to be able to create and edit the
analytical model themselves and not
rely on a database expert:

Adding in additional fields to
an NPT analysis

e Easily add in additional data from e
different database tables M - ;
* Join data from a completely different e é il

data-source such as Excel or other
relational databases

HALLIBURTON Solving (hallenges. ™

* Build entirely new analyses based on
your specific needs, problems, and
data-sources
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AN SCIENce simpinen

BIG data
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High Science Simplified®

What is Big Data? Definitions

Velocity Volume Variety
Data acquisition rates from in- Large Operators can have 50+ Typically there is a complete
well sensing has increased in disparate relational data-stores. lack of integration between
line with Moore’s Law with structured, semi-structured,
well-data rates doubling every Super-majors can easily exceed and un-structured data
1.5 years?. 2TB of additional data-storage a systems?,
day?.
‘Tos ‘BOs '8ls ‘005 "10s

TB/M OxS

GEB/d ‘

DTS
ME/d
FDGs, |
kB/d ]

B/d CH looging/well testing

1) . Vianney Koelman, JPT July 2%11
2)  Ahmed Abou-Sayed, JPT October 2012
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What is Big Data? Challenges

High Science Simplified

Velocity

Traditional databases can not
handle these data velocities,
and will choke, and relational
data-forms become
increasingly unwieldy.

T0s '80s ‘B0s '00s "10s

TE/d DxS

GBid

DTS
ME/d
PDGs I
kB/d ]‘

Bid CH logging/well testing

Volume

Large data-sets such as real-
time data are typically not
stored at all or stored in non-
relational formats that are
impossible to analyze.

Variety

Joining disparate data-sources
becomes ever more complex
and critical interpretive &
contextual data is not included
in typical analyses.

L
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High Science Simplified®

Big Data & Analytics Workflow

Data Mining & Predictive Analytics
Predictive Model Building & Real-Time Decision Making
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Big Data & Analytics Workflow
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Data Cleansing & Analysis
Business Intelligence Data Models and Interactive Visualization

TS - Sukict . vow
=

|I||[[||J‘||';.ld’]’.hl“'lﬂl’“‘ |

Al

16

i

Predictive Analytics

High Science Simplified

Data Mining &
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Big Data & Analytics Workflow

Big Data Aggregation

Real-Time & Historical Data Loading, Aligning, Filtering, Cleaning,

Transforming, Joining & Warehousing
Real-Time Data

Relatlonal
Databases

Historical
Real-Time
Data
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Unstructured
Data

High Science Simplified

Data Cleansing &
Analysis
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Data Mining &
Predictive Analytics
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Big Data & Analytics Workflow
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High Science Simplified®

Big Data Aggregation

Real-Time
Data

Data Cleansing &

Analysis

|
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Data Mining &
Predictive Analytics
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High Science Simplified

Big Data and Analytics

~ C — -

\
Big Data Aggregation

W =

Contextual
Real-Time

Data
Data

1. Blg Data Aggregation
Stream WITSML data directly into data-warehouse in relational
form
* Associate contextual engineering and real-time data
* Leverage existing EDM data-model for security and well
identification

R

Data Cleansing &
Analysis

2. Historical Data Modeling & Visualization

« Drilling/engineering specific, problem-oriented data models
(Analyses)

* Handles drilling/engineering specific data such as runs,
activities, datums, units, time-vs-depth data etc.

+ Easy-to-use, intuitive, interactive visualization of Real-Time data
for historical analysis

3. Predictive Analytics
+ Data mining & model-building for real-time data
+ Easy-to-use segmentation, cluster analysis & data cleaning tools
« Single repository & tool for models, model scoring, analytical,
and raw real-time data

Data Mining &
Predlctlve AnaIytlcs
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Hiah Science Simplified

Data Aggregation: Real Time Data Alone is not Endugh |

= Symptoms
— Block position (top drive) static
— No rotation of the drill string
— Pumps on and pumping down-hole

= Diagnosis
= Off-bottom circulating
= Scheduled top drive maintenance = Rig Repair
= Unscheduled top drive maintenance = NPT

= Safety Incident
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High Science Simplified

Data Aggregation: Real Time Data Alone is not Enough

<<<(( ))))) Real-Time Data
Sources & Stores
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High Science Simplified

Data Aggregation: Real Time Data Alone is not Endugh

W) [ e
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e Bit Manufacturer

* Bit Model

*  Mud Motor
Manufacturer

* Rig Name

* Rig Crew

22

Other Contextual Data Stores

* Costs
» Safety Incidents

HALLIBURTON



High Science Simplimed

Data Aggregation: Real Time Data Alone is not Endugh

Other Contextual Data Stores

= ———
W) [ e e

Analytical Framework
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High Science Simplified

Data Aggregation: Real Time Data Alone is not Enough

W) [ e

WITSML
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Zeta Data Services

Other Contextual Data Stores
2 — O

ETL

—

v

—

—

_ DataWarehouse

Zeta Data Model
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Data Aggregation: Joining Disparate
Drilling/Engineering Data Sources is not Simple

Granularity Differences

= Time vs Depth Data

= |nterpolating Special Data

= |nterpolating and Converting Instantaneous Events
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High Science Simplified

Data Aggregation: Joining Disparate
Drilling/Engineering Data Sources is not Simple

= Granularity Differences

— Data from real-time sensors is at sample rates of 1
data-point per second or less

— Contextual data from relational data sources is much

less, on the rate of per hour or per day
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High Science Simplified

Data Aggregation: Joining Disparate
Drilling/Engineering Data Sources is not Simple

= Granularity Differences

— Need a smart method to automatically populate the
dense model with values from a less dense source to
give a completely populated analytical dataset to
analyze/predict from.

5 Time SQL Jast JosaUe As 16K Log Sample Condition Bit Make/Model
VERT = T, Bit 1
,.:—ff — = ' T, Bit MD In Bit 2
% E = T3
S| E = T,
EllEET E 1
Nl ..
=== il
: ‘::;f = T....
Ee=1 F = i Bit MD Out
VEELF T Bit 3
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High Science Simplified

Data Aggregation: Joining Disparate
Drilling/Engineering Data Sources is not Simple

= Granularity Differences

— Need a smart method to automatically populate the
dense model with values from a less dense source to
give a completely populated analytical dataset to
analyze/predict from

5 Time SQL Jast JosaUe As 16K Log Sample Condition Bit Make/Model
t =R E = 1l Bit 1
===t T, Bit MD In Bit 2
o E 1S F | Bit 2
S| E = T4 Bit 2
EllEET E i Bit 2
VI == = T Bit 2

aME== !

| -~ 1| Bit 2
) - — — T. Bit 2
| === == T, Bit MD Out Bit 2
g —=—=x ... Bit 3
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Data Analysis: Drilling Analytical Models High Seence Simplfie

= |nterrogating Terabytes of data can be a time-consuming

and frustrating process
— BI/OLAP-Cubes (multi-dimensional models) allow users to focus on specific
drilling/engineering challenges
— Data that can be joined in data-bases utilize the Analytics Engine for performance.

— All streaming in optimized using Hadoop MapReduce @

Big Data Contextual Data

A AR 1‘ 800

Relational Structure Relational Structure

Analytical Data Models

%‘%E%%

Multi-Dimensional Data (Cubes)
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Data Analysis: Complex Joins & Common Data Model

= Joining data for traditional Analytics is based on time
and/or contextual IDs

= With drilling data we have a combination of time and
depth ranges across multiple data-sources as well as
contextual IDs

= For example:
— BHA run tables have Well ID, Wellbore ID, BHA Run ID, & Assembly ID
— Assembly tables have Well ID, Wellbore ID, Assembly ID

— Hole Section tables have Well ID, Wellbore ID, Hole Section ID, and
Assembly ID (but only for certain applications & depths of Hole Section
Annulus are not stored in the database)

— Sections can have hole start and end depths, BHA in & out depths, section
start and end times, BHA start & end times etc.

= To be successful we need to join across not only all these multiple tables, with
multiple IDs, but also across multiple time and depth ranges.
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Data Analysis: Complex Joins & Common Data Model

= |n ZetaAnalytics we have built a system & workflow to combine all these
disparate drilling objects, and hide the complexity from the end-user

= We have designed a Common Data Model consisting of standard
Dimensions for your common drilling objects that can be re-used with data
from any E&P data-store

= Hole Sections

= Bit

= BHA

= BHA Components
= Costs

= Equipment

= Materials

= Phases/Codes

©2012 HALLIBURTON. ALL RIGHTS RESERVED| aica| dimensional data-models for Wellbore & drill-string

Mud,
Formations
Well
Wellbore
NPT

Event
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Stimulation etc.
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High Science Simplified

Data Analysis & Visualization
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Summary

= Now is the time for Analytics & Big Data in E&P

= Traditional Analytical workflow and techniques will not
Succeed with our data

— Data Aggregation of disparate drilling & engineering
data sources requires complex joining

— Data Visualization needs to be built around Drilling
& Engineering data and workflows

— Data Mining needs to take into account the nature
of our data and the skills of our users

= Landmark will continue to innovate in the field of Big
Data & Analytics
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