Getting more from your Engineering Data

John Chapman Regional Technical Manager

Getting more from your Engineering Data?

Getting more from your Engineering Data?

extracting information

from data

to make better decisions

Getting more from your Engineering Data

- Data Analytics
- Big Data

As an industry, we plan new wells based on past drilling experiences and data

- Much of current historical analysis is based on the experience of the engineer, not on reliable data and consistent analytics
- For the data that is available, it is difficult to extract meaningful and timely knowledge from it

Getting more from your Engineering Data

"Data is not information, information is not knowledge..." Clifford Stoll

Why Analytics?

Optimize planning new wells

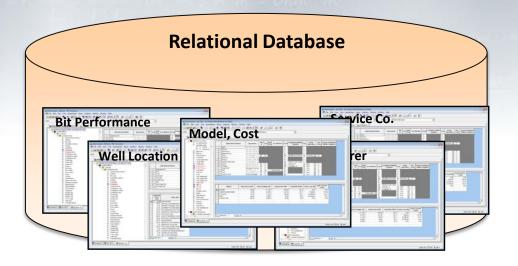
Minimize costs

Reduce down-time

- The ability to easily access, review, interrogate, & visualize all relevant data (including historical real-time data) from offset wells.
- Quickly compare data from tens if not hundreds of wells in an area
- Identify patterns that preceded previous downtimes

Benchmarking activities

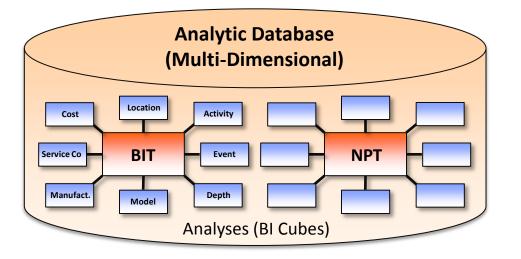
Rate, manage, and improve performance


- Identify the best performing options in relation to a specific process; this could include any process of well planning, well construction, or well abandonment.
- Identify & rank underperforming units, service companies, wells etc.

Analytics

High Science Simplified

Relational Databases vs Analytical Databases


Relational vs. Analytic Data Models

Relational Database

Data is arranged in flat inter-related tables.

- Very efficient for storing lots of data
- Very inefficient for mining information.

Analytic Database

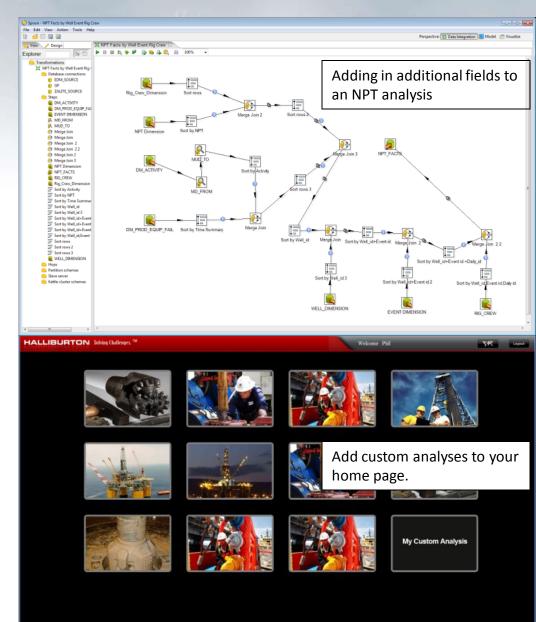
Data is arranged multi-dimensional datastructures known as cubes and centered on a single business question or concern.

- Very inefficient for storing lots of data
- Very efficient for mining information.

Common Analytical Models

Example of business intelligence models (analyses) for common drilling problems:

- NPT Analysis
- BHA Analysis
- Bit Analysis
- Safety Analysis
- Kick Analysis
- Mud Loss Analysis
- Asset Analysis
- Plan vs. Actual
- Rushmore Reports
- Max Activity Analysis


TA = (TO + T)

High Science Simplified

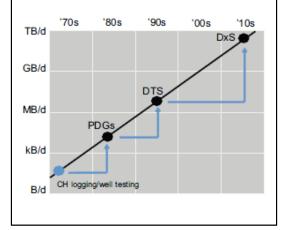
Building Analytical Models

To be effective and utilised, an engineer needs to be able to create and edit the analytical model themselves and not rely on a database expert:

- Easily add in additional data from different database tables
- Join data from a completely different data-source such as Excel or other relational databases
- Build entirely new analyses based on your specific needs, problems, and data-sources

High Science Simplified®

End User: Usability, Portability, Filtration and Visualisation



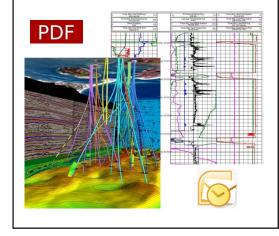
BIG data

What is Big Data? Definitions

Velocity

Data acquisition rates from inwell sensing has increased in line with Moore's Law with well-data rates doubling every 1.5 years¹.

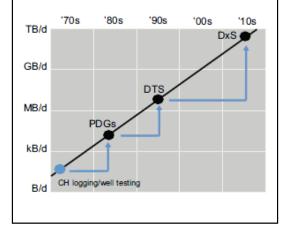
Volume


Large Operators can have 50+ disparate relational data-stores.

Super-majors can easily exceed 2TB of additional data-storage a day².

Variety

Typically there is a complete lack of integration between structured, semi-structured, and un-structured data systems².

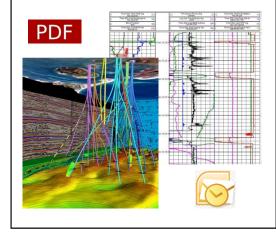


1)

What is Big Data? Challenges

Velocity

Traditional databases can not handle these data velocities, and will choke, and relational data-forms become increasingly unwieldy.


Volume

Large data-sets such as realtime data are typically not stored at all or stored in nonrelational formats that are impossible to analyze.

Variety

Joining disparate data-sources becomes ever more complex and critical interpretive & contextual data is not included in typical analyses.

1)

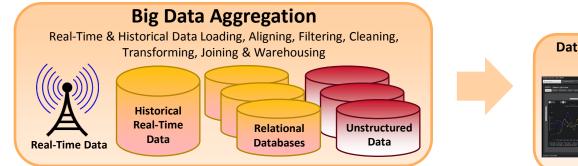

High Science Simplified®

Data Mining & Predictive Analytics Predictive Model Building & Real-Time Decision Making The second secon

© 2012 HALLIBURTON. ALL RIGHTS RESERVED.

High Science Simplified®

Data Cleansing & Analysis Business Intelligence Data Models and Interactive Visualization


Data Mining & Predictive Analytics

HALLIBURTON

Landmark Software & Services

High Science Simplified®

Data Cleansing & Analysis

© 2012 HALLIBURTON. ALL RIGHTS RESERVED.

HALLIBURTON

Landmark Software & Services

High Science Simplified®

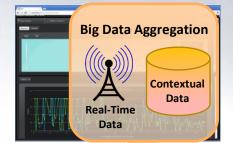
Big Data Aggregation Contextual Data **Real-Time** Data **Data Cleansing &** Analysis Data Mining & **Predictive Analytics**

HALLIBURTON

Landmark Software & Services

Big Data and Analytics

1. Big Data Aggregation


- Stream WITSML data directly into data-warehouse in relational form
- Associate contextual engineering and real-time data
- Leverage existing EDM data-model for security and well identification

2. Historical Data Modeling & Visualization

- Drilling/engineering specific, problem-oriented data models (Analyses)
- Handles drilling/engineering specific data such as runs, activities, datums, units, time-vs-depth data etc.
- Easy-to-use, intuitive, interactive visualization of Real-Time data for historical analysis

3. Predictive Analytics

- Data mining & model-building for real-time data
- Easy-to-use segmentation, cluster analysis & data cleaning tools
- Single repository & tool for models, model scoring, analytical, and raw real-time data

High Science Simplified®

HALLIBURTON

Landmark Software & Services

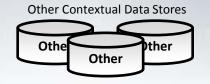
© 2012 HALLIBURTON. ALL RIGHTS RESERVED.

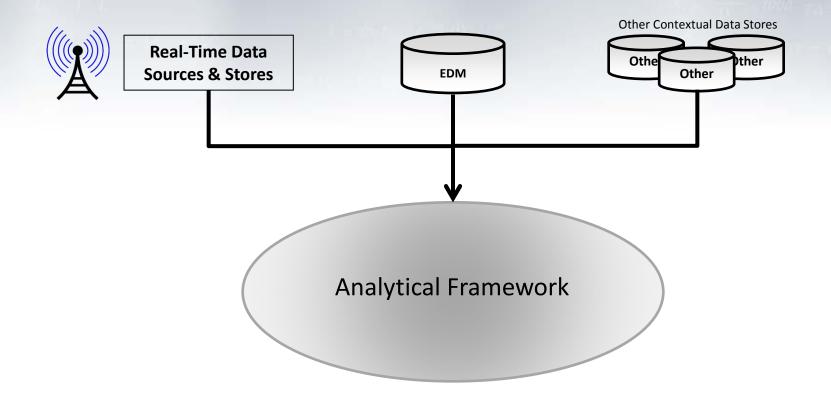
Symptoms

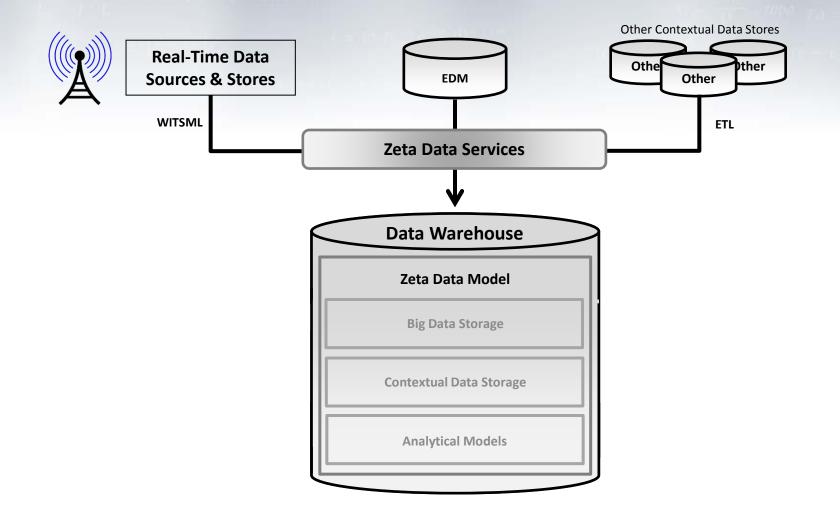
- Block position (top drive) static
- No rotation of the drill string
- Pumps on and pumping down-hole

Diagnosis

- Off-bottom circulating
- Scheduled top drive maintenance = Rig Repair
- Unscheduled top drive maintenance = NPT
- Safety Incident

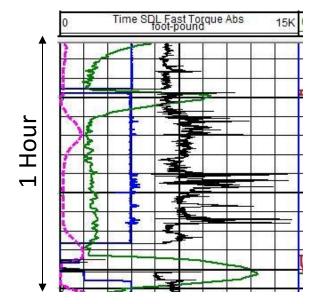

Real-Time Data Sources & Stores


Real-Time Data Sources & Stores



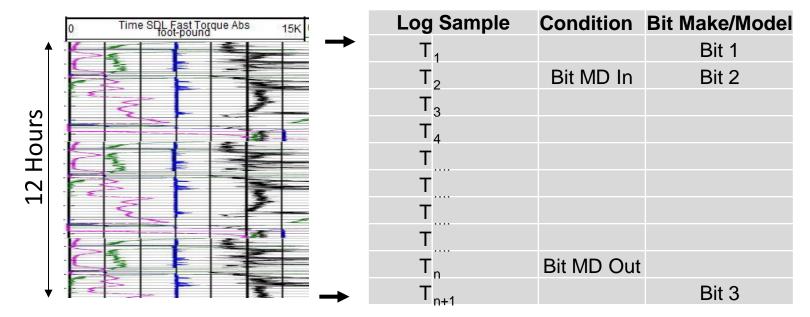
- Bit Manufacturer
- Bit Model
- Mud Motor Manufacturer
- Rig Name
- Rig Crew

- Costs
- Safety Incidents



- Granularity Differences
- Time vs Depth Data
- Interpolating Special Data
- Interpolating and Converting Instantaneous Events

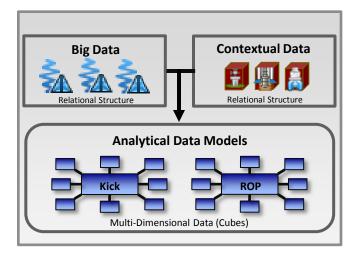
- Granularity Differences
 - Data from real-time sensors is at sample rates of 1 data-point per second or less
 - Contextual data from relational data sources is much less, on the rate of per hour or per day


Hours

		w From Copy	Copy Drillstring To Libra	ry Create	New Drillstring From Librar	У				
8	ST no.	BHA	Ano. Ass	mbly name	MD in (#)	Date/Time in	MD out (ft)	Date/Time out		
1 OH		1	30° BIT & I	IOTOR ASSY -	640.	0 01/03/2004 02:30	3,338.0	01/05/2004 16:30		
-										
		_								_
	ponents BHA 0	perations Bit Oper	ations							
Bit Information										
Bit no. 1			Model no.		GTX C3PSG1		Manufacturer SECURITY DBS			
Run no. N				Size	20.000 in					
Bt Operations										
		om Previous Bit Ope	-							
	ctivity	Time	MD (#)	MD from (#)	MD to (#)	_				
1 DR	~ 00	100	1,078.0							
- Details									_	_
-Details									_	
	DR		•	_		WOB current			urrent TQ	
-Details	DR 00:00		•			WOB current Min. WOB	k		urrent TQ in. TQ	
Details Activity	00:00	78.0 ft	•					ip Mi		
-Details Activity Time	00:00	78.0 ft	v			Min. WOB	10.0 k	ip Mi ip Ma	n. TQ	
-Details Activity Time MD	00:00	_	v			Min. WOB Max. WOB	10.0 k	ip Me ip Me	n. TQ ax. TQ ig. TQ	
Details Activity Time MD MD from	00:00	n	•			Min. WOB Max. WOB Avg. WOB	10.0 k	ip Mir ip Mir ip Av pm SP	n. TQ ax. TQ ig. TQ	
-Details Activity Time MD MD from MD fo	00:00	ft ft	×			Min, WOB Max, WOB Avg, WOB Current RPM	10.0 k	ip Min ip Ma ip Av ip Av pm SP pm Pro	n, TQ ax, TQ ig, TQ ig, TQ ig, TQ ess, off bottom	
- Details Activity Time MD MD from MD fro Density	00:00	n ft 9.20 ppg	•			Min. WOB Max. WOB Avg. WOB Current RPM Min. RPM	100 k	ip Mili ip Ma ip Av pm SP pm Pr pm K8	n, TQ ax, TQ ig, TQ ig, TQ ig, TQ ess, off bottom	
- Details Activity Time MD MD from MD from MD to Density Flow rake Hours	00:00	ft ft 9.20 ppg 65.6 gpm 6.00 hr	•			Min, WOB Max, WOB Avg. WOB Current RPM Min, RPM Max, RPM Avg. RPM	100 k	ip Min ip Min ip Av pm SP pm Pr pm Ha	n, TQ ax, TQ ig, TQ PP ess, off bottom ev	
- Details	00:00 1,0 9 1 4	ft 9.20 ppg 65.6 gpm 6.00 hr 38.0 ft	•			Min, WOB Max, WOB Avg. WOB Current RPM Min, RPM Max, RPM Avg. RPM Rpm rotating curren	10.0 k	ip Min ip Min ip Au pm SP pm Pr pm Pr pm P	n, TQ ax, TQ ig, TQ 2P ess, off bottom ev SR Hydraulics	
Details Activity Time MD MD from MD to Density Flow rate Hours Footage Connection time	00:00 1,0 9 1 4 e	ft ft 9.20 ppg 655 gpm 6.00 hr 38.0 ft hr	•			Min, WOB Max, WOB Avg, WOB Current PPM Min, RPM Max, RPM Avg, RPM Rpm rotating surger Rpm rotating avg.		ip Mile ip Mile pm SP pm Pn pm Pn pm P pm P pm N	n, TQ ax, TQ ig, TQ ap ess, off bottom ev Bit Hydraulics bit lioz, vel.	6
- Details	00:00 1,0 9 1 4 e	ft 9.20 ppg 65.6 gpm 6.00 hr 38.0 ft	•			Min, WOB Max, WOB Avg. WOB Current RPM Min, RPM Max, RPM Avg. RPM Rpm rotating curren	100 k	pp Mai pp Mai pp Au pm SP pm Pr pm P pm P pm H	n, TQ ax, TQ ig, TQ pp ess, off bottom ev Bit Hydraulics Pbit	

Granularity Differences

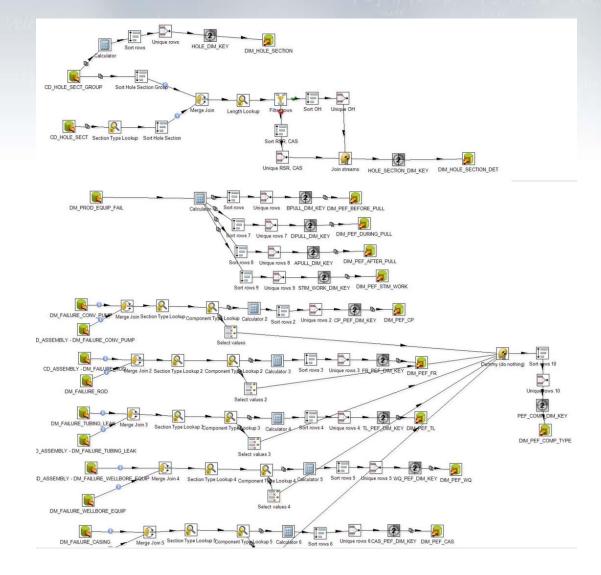
 Need a smart method to automatically populate the dense model with values from a less dense source to give a completely populated analytical dataset to analyze/predict from.


Granularity Differences

 Need a smart method to automatically populate the dense model with values from a less dense source to give a completely populated analytical dataset to analyze/predict from

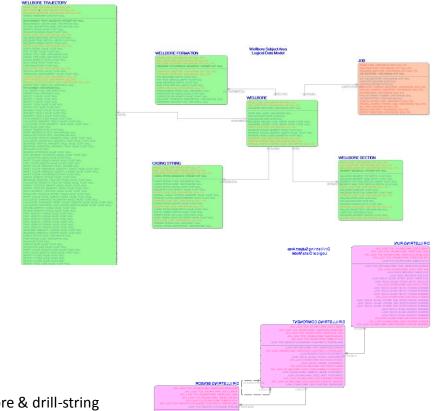
0 Time SDL Fast Torque Abs 15K	Log Sample	Condition	Bit Make/Model
	T ₁		Bit 1
	T ₂	Bit MD In	Bit 2
	T_3		Bit 2
	T ₄		Bit 2
Hours	т		Bit 2
	T _n	Bit MD Out	Bit 2
	T _{n+1}		Bit 3

Data Analysis: Drilling Analytical Models

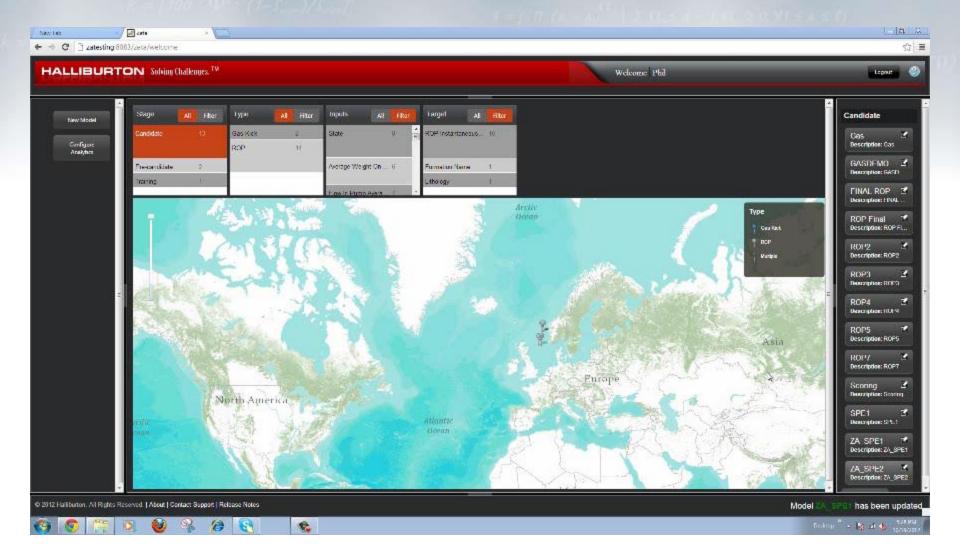

- Interrogating Terabytes of data can be a time-consuming and frustrating process
 - BI/OLAP-Cubes (multi-dimensional models) allow users to focus on specific drilling/engineering challenges
 - Data that can be joined in data-bases utilize the Analytics Engine for performance.
 - All streaming in optimized using Hadoop MapReduce

Data Analysis: Complex Joins & Common Data Model

- Joining data for traditional Analytics is based on time and/or contextual IDs
- With drilling data we have a combination of time and depth ranges across multiple data-sources as well as contextual IDs
- For example:
 - BHA run tables have Well ID, Wellbore ID, BHA Run ID, & Assembly ID
 - Assembly tables have Well ID, Wellbore ID, Assembly ID
 - Hole Section tables have Well ID, Wellbore ID, Hole Section ID, and Assembly ID (but only for certain applications & depths of Hole Section Annulus are not stored in the database)
 - Sections can have hole start and end depths, BHA in & out depths, section start and end times, BHA start & end times etc.
- To be successful we need to join across not only all these multiple tables, with multiple IDs, but also across multiple time and depth ranges.


Data Analysis: Complex Joins & Common Data Model

Data Analysis: Complex Joins & Common Data Model


- In ZetaAnalytics we have built a system & workflow to combine all these disparate drilling objects, and hide the complexity from the end-user
- We have designed a Common Data Model consisting of standard Dimensions for your common drilling objects that can be re-used with data from any E&P data-store
 - Hole Sections
 - Bit
- BHA
- BHA Components
- Costs
- Equipment
- Materials
- Phases/Codes

- Mud,
- Formations
- Well
- Wellbore
- NPT
- Event
- Perforation
- Stimulation etc.

© 2012 HALLIBURTON. ALL RIGHTS RESERVED LOgical dimensional data-models for Hellbore & drill-string

Data Analysis & Visualization

Summary

- Now is the time for Analytics & Big Data in E&P
- Traditional Analytical workflow and techniques will not Succeed with our data
 - Data Aggregation of disparate drilling & engineering data sources requires complex joining
 - Data Visualization needs to be built around Drilling & Engineering data and workflows
 - Data Mining needs to take into account the nature of our data and the skills of our users
- Landmark will continue to innovate in the field of Big Data & Analytics